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Abstract

This laboratory experiment examines behavior in the two-player one-shot complete

information entry game of Bresnahan and Reiss (1990) while varying payoff parameters.

This entry game is regularly used in empirical industrial organization, but has not been

examined experimentally. We find that subjects regularly play dominant strategies

(98.2% on average), however there are violations of iterated dominance (13.6% on

average). We find more coordination in regions of multiple equilibrium when there

are payoff asymmetries (67.3% on average) compared to payoff symmetry (38.4% on

average). We also find behavior is monotonic with respect to own and opponent’s

payoffs.
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1 Introduction

To understand market structure, it is important to understand how strategic

agents perform in market entry games. Work in empirical industrial organization

often uses structural models of entry to facilitate estimation, tighten predictions,

and perform welfare analysis. However, it is difficult to justify whether strategic

agents obey the structural assumptions (e.g. individuals have complete information)

in the empirical settings of interest. While it is difficult to verify these assumptions

on strategic agents in the field, we can enforce these assumptions in an idealized

laboratory study to observe how individual behave.1 Regardless of the outcome of

the laboratory study, it is likely to reveal useful information for an empirical study.

For example, if the experiment shows individual behavior is described by the model

when the assumptions are enforced, then a researcher can have more confidence in the

structure of the model. Even when the experimental data is differs from the model

predictions, it may be possible to organize comparative statics of behavior from the

lab to obtain shape restrictions (e.g. monotonicity) that could be used to analyze

data from the field.

In this paper, we perform a laboratory experiment to examine whether strategic

agents follow Nash equilibrium predictions in the one-shot complete information entry

game described in Bresnahan and Reiss (1990), Berry (1992), and Tamer (2003) with

two agents. For this class of games, each agent can choose to be either In or Out of the

market where the payoff when all agents play Out is normalized to zero. When only

one agent plays In, that agent makes a monopoly profit subject to a “shock.” Lastly,

when both agents play In, each receives their monopoly profit plus the “shock” and

less a penalty term. The penalty term captures competition or congestion that results

when both agents are in the market. We examine one-shot behavior of 88 subjects in

64 different full information games varying the level of monopoly profit, the penalty

when both agents enter, and the “shocks.” Since this is a laboratory study, all of

these parameters including the “shocks” are experimentally controlled which allows

us to look at rich comparative statics of behavior in entry games.

We focus our exploratory analysis on two main questions to evaluate the entry

1For example, in the field it seems difficult to verify whether individuals know all payoff relevant
information of their opponents. In contrast, we are able to ensure individuals see all payoff relevant
information in the laboratory.
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game model of Bresnahan and Reiss (1990), Berry (1992), and Tamer (2003).

Question 1. Do Nash equilibrium predictions describe strategic behavior in the lab?

Question 2. Are there comparative statics that are consistent across games?

Question 1 is essentially one of testing Nash equilibrium predictions. We evaluate

Question 1 by looking at failure to play dominant strategies, failure to apply iterated

dominance, and failure to coordinate play. Question 2 looks for regularities regardless

of the structural model. Question 2 is essentially independent of the first question.

For example, Nash equilibrium often has no prediction on comparative statics as

discussed in Goeree and Holt (2001). Thus, any findings from Question 2 could be

used to place additional restrictions on Nash equilibrium or best response behavior

even when the data agrees with Nash predictions. Analogues of these questions could

be examined for most structural models in empirical industrial organization where

the first question looks at the model structure and the second at comparative statics.

We briefly summarize some main results. Regarding Question 1, we find devia-

tions from Nash predictions, but they are sensitive to payoffs. We find few violations

of playing dominant strategies where on average 1.8% of all relevant play deviates

from the dominant strategy. We find larger errors when examining iterated domi-

nance. A violation of iterated dominance occurs when an individual fails to realize

the other player has a dominant strategy that they should take into account. For

situations where violations of iterated dominance are possible, we find on average

13.6% of play violates iterated dominance. We also find that payoffs of individuals

facilitate coordination of actions when there are multiple equilibrium. In particular,

we find individuals are more likely to coordinate when payoffs for entry are asym-

metric. When there are multiple equilibrium, on average 67.3% of play follows Nash

predictions when payoffs are asymmetric compared to only 38.4% of play on average

with symmetric payoffs. These results also mean individuals violate Nash equilib-

rium predictions 32.7% on average with asymmetric payoffs and 61.6% on average

with symmetric payoffs.

Regarding Question 2, we find evidence of several comparative statics. For ex-

ample, we find that subjects are more likely to play “In” when there is a higher payoff

“shock” to enter. We also find that players are less likely to play “In” as the other
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player’s “shocks” increase. Thus, individuals are sensitive to their own payoffs as well

as their opponents payoffs. We discuss how the comparative statics we find could be

used to help identify and estimate coefficients in our final remarks. We do not apply

these results to existing datasets since we would need to develop a new estimation

method to incorporate the monotonicity restrictions with the Nash equilibrium pre-

dictions. Overall, we view Nash equilibrium predictions as most useful in situations of

dominance and less useful elsewhere, but the monotonicity restrictions appear robust.

Whether these monotonicity restrictions would impose enough structure to recover

useful information empirically is an open question.

We focus on the one-shot complete information market entry game of Bresnahan

and Reiss (1990), Berry (1992), and Tamer (2003) since this framework has been

used extensively in empirical industrial organization. For example, these models have

been estimated using field data from the automobile retail market in Bresnahan and

Reiss (1990), markets for airline routes in Berry (1992); Ciliberto and Tamer (2009),

markets for professional occupations such as doctors, plumbers, and veterinarians in

Bresnahan and Reiss (1991), and markets for construction contractors in Bajari et al.

(2010) among others.2 While there are many empirical studies on market entry games

using this structure, we were unable to find work examining behavior in this type of

entry game using a controlled laboratory environment. More generally, we think that

looking at structures used in empirical industrial organization is a fruitful avenue for

experimental researchers.

However, laboratory research faces its’ own set of drawbacks. Many of these

issues are discussed at length in the survey on experimental work in industrial or-

ganization from Holt (1995). For example, some might be skeptical of laboratory

studies since incentives are relatively small, subjects in the lab may not have experi-

ence with the entry game, and the laboratory lacks the “real world” context of the

field. While these are valid concerns, laboratory studies have benefits relative to field

studies in several ways. For example, one does not need to estimate payoff parameters

to evaluate the model since the payoffs are set ex-ante. We are also able to guarantee

that both players have full information which is difficult to imagine in a “real world”

setting. Lastly, control of payoffs allows us to examine comparative statics that would

be difficult to examine in the field since the components of a firm’s payoff such as

2See Berry and Reiss (2007) for a survey on estimating models of market entry on field data.
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price is often determined endogenously.

We think that laboratory methods can complement the empirical industrial or-

ganizations literature by giving a more nuanced understanding of how individuals

behave when interacting with an idealized setting of the model. Several recent pa-

pers have turned towards using laboratory experiments to test the empirical validity

of models used in applied research. For example, Salz and Vespa (2020) use a lab-

oratory experiment to test the validity of the Markov Perfect Equilibrium used in

dynamic oligopolistic competition. Furthermore, Aguirregabiria and Xie (2021) show

how laboratory data can be used to identify individuals’ beliefs about play in discrete

choice games. Whether restrictions found in the lab give better or worse predictions

is an empirical question. Ideally, the features seen in the lab would be incorporated

in a structural model to be applied on field data. One could then compare whether

imposing the restrictions seen in the lab improve predictions or better describe “real

world” field data.

We also note that experiments like the one studied here might be of interest

for econometricians studying strategic games of complete information.3 For example,

there are often complications that result when using game theoretic models since there

are regions with multiple equilibrium. One approach to handle multiple equilibrium is

to assume and estimate equilibrium selection mechanisms as done in Sweeting (2009)

and Bajari et al. (2010). Another approach makes no assumptions on equilibrium

selection and instead bounds the probabilities that can result from equilibrium play

to facilitate analysis as in Tamer (2003) and Ciliberto and Tamer (2009). Galichon

and Henry (2011) and Beresteanu et al. (2011) show how to incorporate additional

assumptions related to Nash-play to get sharper identification regions. One way to

get sharper predictions is to impose shape restrictions on how often equilibrium are

played. Whether shape restrictions are appropriate is difficult to analyze from field

data, but could be easily verified in an laboratory experiment. Thus, experiments

could inform shape restrictions used in the field. An alternative approach is to try

3There is an extensive literature on this topic. See the surveys by De Paula (2013) and Aradillas-
López (2020) for an extensive description of the literature. Other papers show how to perform anal-
ysis with weaker solution concepts such as rationalizability in Aradillas-Lopez and Tamer (2008).
There are also papers that consider equilibrium when there is incomplete information incomplete
information such as in Grieco (2014) and Magnolfi and Roncoroni (2022). Contemporaneous exper-
imental work in Mahmood (2022) looks at equilibrium selection in a game of strategic substitutes.
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and discern solution concepts from the data as discussed in Kashaev and Salcedo

(2021).

The remainder of the paper is organized as follows. Section 2 describes the basic

model. Section 3 describes the experimental design, how it relates to the theory,

and defines how we measure violations of Nash equilibrium play. Section 4 presents

the main results from the experiment. Section 5 describes other relevant literature.

Section 6 provides our final remarks.

2 Theoretical Preliminaries

We study complete information simultaneous entry games with two players in-

spired by the decomposition of Bresnahan and Reiss (1990), Berry (1992), and Tamer

(2003) represented in Table 1.

Out In
Out (0,0) (0,x2 ` u2)
In (x1 ` u1,0) (x1 ` u1 ´ ∆1, x2 ` u2 ´ ∆2)

Table 1: A simultaneous entry game

We denote the role a player takes in Table 1 by i P t1, 2u where the row role is

indexed by 1 and column role is indexed by 2. Here x1 is a baseline payoff to the

player in the row role and x2 is a baseline payoff to the player in the column role.

The term ∆1 ą 0 is a penalty to the player in the row role when both players enter

the market. The term ∆2 ą 0 is a penalty to the player in the column role when

both players enter the market. In Tamer (2003), the u1 and u2 terms are interpreted

as random payoff shocks to the individual player. For the economic experiment, we

choose values for the “shocks” to study comparative statics around a given baseline

payoff. The values of these “shocks” are unknown to the players in the laboratory

experiment. The entry decision of the player in the ith role is denoted by yi P t0, 1u

where yi “ 0 when they play Out and yi “ 1 when they play In.

Throughout the paper, we treat pure strategy Nash equilibrium as the base-

line model.4 A game is defined by the vector of payoff parameters Γ “

4For the region with multiple equilibria, mixed strategy equilibrium are possible. We discuss
this in Appendix D.
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Figure 1: Equilibrium Regions

px1, x2,∆1,∆2, u1, u2q. Following Tamer (2003), we can trace out all pure strategy

Nash equilibrium predictions for different values of pu1, u2q when given px1, x2,∆1,∆2q

as in Figure 1 where the equilibrium is represented by py1, y2q. Thus, the bottom-left

region with p0, 0q is when players in the row and column roles both play Out. While

there are many regions with a unique equilibrium, there are multiple equilibrium

where one player plays In and the other Out given by (1,0) and (0,1) in the region

with ´x2 ă u2 ă ´x2 ` ∆2 and ´x1 ă u1 ă ´x1 ` ∆1.

We give some examples to better understand Figure 1. First, note that for all

regions to the left of ´x1, it is a dominant strategy for the player in the row role to

play Out. Similarly, for all regions below ´x2, it is a dominant strategy for the player

in the column role to play Out. We can similarly find regions where it is a dominant

strategy to play In. For example, it is dominant for the player in the column role to

play In for the region above ´x2 ` ∆2. Several regions allow us to look at violations

of iterated dominance. For example, in the region with ´x2 ` ∆2 ă u2 and with

´x1 ă u1 ă ´x1 `∆1, it is a dominant strategy for player in the column role to play

In, but the player in the row role makes a positive payoff playing In when column
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plays Out. Thus, this region allows us to look at whether individuals are able to

recognize iterated dominance when there is some temptation to play In. The same is

true for the region to the right of the region with multiple equilibrium with the row

and column roles reversed.

To measure violations of equilibrium play, we will examine how often a player

does not play their best response. The best response of the player in the ith role

conditional on the action of the player in the jth role is given by

y˚
i pyjq “

$

&

%

1 if xi ` ui ´ ∆iyj ě 0

0 otherwise

where j ‰ i.

3 Experimental design and methods

Our experimental design is motivated by the entry game from Bresnahan and

Reiss (1990), Berry (1992), and Tamer (2003). In our experiment, subjects took part

in a series of complete information one-shot entry games described in Table 1. Each

session consisted of 64 different games. The experiment was coded in oTree (Chen

et al., 2016). There were several important design choices that we discuss below.

Following the design choices, we provide a screenshot of the experiment. Lastly, we

describe how we measure violations of Nash equilibrium.

3.1 Choice of Payoffs

The nature of the decomposition outlined in Table 1 allowed us considerable

freedom in selecting the parameters for the experiment. For simplicity and ease of

comparability, we selected parameters based on the following considerations:

1. We decided to use a common baseline payoff for each role (i.e. x1 “ x2 “ x)

and a common penalty when both players enter (i.e. ∆1 “ ∆2 “ ∆).

2. To mimic high and low stakes, we let x and ∆ to take on high and low values.
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The majority of these cases are not without loss of generality.5 We focused on sym-

metric baseline payoffs and penalties since we did not want players to be concerned

about inequality.

The payoff to each subject is described in points where 1 point = $0.10. In

addition to a show-up fee, we started subjects with 150 points to avoid subjects

loosing money from their participation. We note that this means that subjects are

subject to experiencing losses in the game. For example, when ´xi ă ui ă ´xi ` ∆i

a subject can experience a loss when both players choose In. Similarly, whenever

ui ă ´xi the ith player will experience a loss whenever they choose In. For this

experiment, we treat individuals as risk neutral in payoffs. Thus, we do not attempt

to interact with the literature that examines loss aversion.6 While this is a source of

potential error, it does not change any of the dominance properties or regions of pure

strategy equilibrium. Moreover, the analysis of comparative statics is independent of

the structural model assumed.

x ∆ Possible ui Values
50 75 t´75,´30, 10, 35u

50 125 t´60,´5, 30, 85u

100 75 t´110,´75,´50,´20u

100 125 t´125,´50,´25, 30u

Table 2: Values of the Games (in points)

We considered ui’s from a common set of values for each combination of x and

∆ with values in points. Table 2 shows the values in points chosen to create the 64

games we study. For this reason, we also refer to a game as Γ “ px,∆, u1, u2q. For a

fixed x and ∆, the Nash equilibrium only depends on the shocks pu1, u2q. For each

combination of x and ∆, we choose “shocks” to put payoffs in each of the regions

from Figure 1.

For each tuple px,∆q, we have 4 possible values of ui. This means that we

have 16 different combinations of shocks pu1, u2q. As a result, we have 64 games

Γ “ px,∆, u1, u2q. Figure 2 shows the pure strategy Nash equilibrium prediction for

5However, we note that when there are symmetric shocks, these are equivalent to an increase or
decrease in the baseline payoff.

6See the survey article of Barberis (2013) who discusses advances in loss aversion following
Kahneman and Tversky (1979).
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Figure 2: Equilibrium Prediction of Games with x “ 50, ∆ “ 75

one set of px,∆q “ p50, 75q at different values of pu1, u2q. As seen in Figure 2, this

design gives us a grid over the different equilibrium regions. We have more games in

the region with multiple equilibrium since we thought this would be an interesting

region to examine. We also had at least one game in every other region to get

comprehensive comparative statics.

3.2 Basic setup of the game

Next, we describe how the game was presented to subjects. Subjects were asked

to choose between two alternatives: In or Out. Payoffs depended on their action,

as well as their opponent’s action. Each subject was presented the game from the

perspective of the row role. We made this design choice so that there was no difference

in how the individuals made their choices. For example, if we instead had individuals

interact with payoffs as a column role, then the results could be driven by the fact that

individuals are better/worse are evaluating payoffs in the column role. We wanted to

avoid this possibility.7

7Even though presentation of the game is the same, we assume an artificial separation between
the two groups of individuals as “Row” and “Column” players throughout the analysis. One reason
to do this is so that each game has the same sample size to estimate population best responses.
Another reason for this separation is to look at whether comparative statics in best responses hold
on two different sub-populations. Alternatively, we could impose the symmetry of payoffs to double
sample sizes for games not on the diagonal of Figure 1.
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Other
Out In

You
Out (0, 0) (0, α)
In (a, 0) (b, β)

Table 3: Payoff Table in Experiment

While we designed the payoffs by using the decomposition from Bresnahan and

Reiss (1990), Berry (1992), and Tamer (2003), we present subjects with a simpler

environment. In particular, the ith subject was shown payoffs as in Table 3 where

we have a “ x ` ui and b “ x ` ui ´ ∆ while their opponent is indexed by j ‰ i

and their payoffs are given by α “ x ` uj and β “ x ` uj ´ ∆. We decided to show

subjects the result of the addition to prevent confusion and ensure violations of Nash

equilibrium were not coming from computational errors. For example, if we did not

add the numbers together for the subject and saw an individual choose a dominated

strategy, then this could have occurred from poor computational skills.

3.3 Implementing one-shot games and payments

We now describe how we implement the one-shot nature of the game. First, we

wanted to ensure that subjects understand how they earn money in the game. To

get subjects to understand the environment, we required subjects answer three un-

incentived questions about their payoffs in different situations of play. An example

practice question faced by subjects is described in Appendix B. A subject could not

continue to the main experiment until these questions were answered correctly. Thus,

we believe subjects understand how they are paid for their actions.

In order to mimic the one-shot nature of the games, the subjects were randomly

matched for each round of play and did not receive feedback. We wanted to shut off

an individual’s ability to learn in order to better understand whether individuals are

able to coordinate using the structure of the game rather than learning how a specific

population responds. We now describe how we implement one shot games in more

detail. First, subjects were randomly matched at the beginning of each round with

another participant according to the following procedure. Each subject was assigned

an ID, (either 1 or 2 which mimic the row and column roles), and was randomly

matched with another subject with a different ID. Thus, a subject with ID 1 was
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always matched with a subject with ID 2 and vice versa. This matching protocol

ensured that no participant played the same entry game more than once. We refer

to the players with ID 1 as “Row” and those with ID 2 as “Column” to distinguish

between these two groups.8 The matching procedure is implemented using the built-in

random matching feature from oTree (Chen et al., 2016). Subjects were not provided

with details about the matching procedure. In the instructions, we merely stated that

subjects would be randomly matched with another at the beginning of every round.

Subjects faced no time restrictions in making their decision, but could only move

on once all subjects finalized their decisions. Once all subjects finalized their decisions,

they all moved on to the next round of decisions and were randomly matched to

another subject. Thus, subjects did not have an incentive to move through the

experiment as fast as possible since they had to wait until all other subjects made

their choices. We did not include any feedback stages to limit any learning that could

occur during the experiment. Finally, the order of games was randomized ex-ante

and all participants across all sessions faced the same sequence of games.

Once all 64 rounds were complete, we paid subjects for one randomly chosen

round which is incentive compatible under the monotonicity assumptions of Azrieli

et al. (2018). For the round chosen for payment, we showed the subject the payoff

table, the subject’s decision, their randomly matched opponent’s decision, and their

payoff in points based on actions of both subjects. This payoff was then added to

their starting balance of 150 points. The starting balance was common knowledge

and was implemented so that subjects could experience losses present in the entry

game of Bresnahan and Reiss (1990), Berry (1992), and Tamer (2003).

3.4 Experiment implementation details

The experiment was conducted at the Ohio State University Experimental Eco-

nomics Laboratory. We recruited subjects from the undergraduate and graduate

student population using ORSEE (Greiner, 2015). We had 88 subjects take part in

the experiment over the fall 2021 and spring 2022 semesters. Thus, we have 44 sub-

jects for each role (e.g. row and column) for each of the 64 games. The size of the

sessions ranged from 6 to 16 subjects with an average size of 9.8 subjects per session.

8However, we remind the reader that the payoff tables were always shown to the subjects were
from the perspective of the row role.
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All sessions were required to have more than 6 people to ensure they would match

with several different subjects. The experiment was programmed using oTree (Chen

et al., 2016). A screen-shot from the experiment is shown in Figure 3. We recall that

all subjects faced the game from the perspective of the row player, but were given an

ID for the different roles in the game.

Figure 3: Screenshot of a Round

Instructions were read aloud by the experimenter and were displayed on the sub-

ject’s computer screen at the start of the experiment. The instructions are reproduced

in Appendix A. Regarding payments, subjects earned a $5 show-up fee. In addition,

subjects were given an endowment of 150 points from which they could earn or lose

additional money where 1 point = $0.10. The parameters were chosen so that the

largest loss would result in a gain of zero points although this never happened in

practice. However, some subjects did experience losses from their play. On average,

subjects earned $22.8 including the show up fee. All sessions lasted less than an hour

so the average wage exceeds $22 per hour.

3.5 Types of Violations

We examine violations of Nash equilibrium in the one-shot entry game for

each group of subjects where ID 1 is “Row” and ID 2 is “Column.” Understanding
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whether violations of Nash equilibrium are present in the entry game is important

since it is regularly used in applications (Bresnahan and Reiss, 1990, 1991; Berry,

1992; Ciliberto and Tamer, 2009; Bajari et al., 2010). Let ŷi,npΓq be the observed

play from the n-th individual in the ith group (“Row” or “Column”) for the game

Γ “ px1, x2,∆1,∆2, u1, u2q. We measure violations from Nash equilibrium play for

the ith group in game Γ as

1

N

N
ÿ

n“1

|ŷi,npΓq ´ y˚
i pŷj,npΓqq|

for j ‰ i where N is the total number of individuals in the ith group.

There are four types of violations that seem qualitatively different. We record

the violations and the space of parameters where they can occur in Table 4. We give

abbreviations to these violations so that we can label regions where the violations can

occur for figures in the results section.

Type of Violation Region of Violation
Out Dominance (ODom) ui ă ´xi

In Dominance (IDom) ´xi ` ∆i ă ui

Iterated Out Dominance (IODom) ´xi ă ui ă ´xi ` ∆i and ´xj ` ∆j ă uj

Iterated In Dominance (IIDom) ´xi ă ui ă ´xi ` ∆i and ´xj ă uj

Coordination (Cor) ´xi ă ui ă ´xi ` ∆i and ´xj ă uj ă ´xj ` ∆j

Table 4: Types of Violations

We say there is a violation of Out Dominance when it is a dominant strategy to

play out. Similarly, we say there is a violation of In Dominance when it is a dominant

strategy to play In. There is a failure of iterated dominance when the player fails to

recognize that their opponent has a dominant strategy. There are two ways iterated

dominance can fail. First, a player might fail to recognize that their opponent has

a dominant strategy to choose In and, subsequently chooses In and makes losses.

We consider this a violation of Iterated Out Dominance. Secondly, a player might

fail to recognize that their opponent has a dominant strategy to choose Out and,

subsequently chooses Out, forgoing positive earnings. We call this a violation of

Iterated In Dominance. Lastly, we say there is a coordination violation when there

are multiple equilibrium and the players fail to coordinate on one of the pure strategy

Nash equilibrium.
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4 Results

We briefly summarize the main results from the experiment. Most of our results

will be descriptive statistics. Thus, we do not present many statistical tests except

when we examine comparative statics using different regressions.9

1. We observe few violations of Out and In dominance (1.8% of relevant play on

average),

2. We observe frequent failure of iterated dominance (13.6% of relevant play on

average),

3. In regions of multiplicity, payoff asymmetry has a majority of play in a coor-

dinated equilibrium (67.3% of relevant play on average) (One-sided binomial

test with null π “ 0.5 has p-valueă0.0001), whereas payoff symmetry results

in a minority of equilibrium coordination (38.4% of relevant play on average)

(One-sided binomial test with null π “ 0.5 has p-valueă0.0001),

4. We observe evidence of monotonicity of choices wherein the frequency of choos-

ing In is increasing in the “shock” to their payoff for choosing In and decreasing

in the “shock” to their opponent’s payoff for choosing In.

We go through these results in more detail in the subsections. However, we also note

that many of the main results can be seen looking at how observed play changes for

fixed values of base payoffs and penalty given by px,∆q. Thus, before going into more

detail, we show how these can be seen from descriptive data in one game.

4.1 Descriptive results

We describe basic results looking at the play from distinct games with a fixed

px,∆q and varying the shocks pu1, u2q. Recall, a game is identified by the parameters

Γ “ px,∆, u1, u2q. Figure 4 shows the frequencies of Row and Column groups of

players choosing In for each game when x “ 50 and ∆ “ 75. The values in blue

indicate Row group frequencies and, values in red indicate Column group frequencies.

9Note that the relevant statistical test is a binomial test on whether behavior is consis-
tent/inconsistent with either playing the dominant action or having joint play be an equilibrium. In
either case, the null assumes that all choices are consistent with the model so consistency is predicted
with probability one so any observed violations of the model gives a rejection.
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Results are qualitatively similar for all other games, the figures for which can be found

in the Appendix C. In the figure, we label the regions that relate to violations of

In/Out Dominance, Iterated In/Out Dominance, and Coordination for the Row and

Column groups by labeling these regions with the abbreviation in the color of the

player. For example, a red ODom in the bottom corner means that any play of In

consititutes a violation of Out Dominance for the Column group.

Figure 4: Frequency of In for x “ 50, ∆ “ 75

Looking at Figure 4, we can make several observations. First, empirical frequen-

cies of the Row and Column group choosing In almost perfectly match the theoretical

predictions in regions of dominance. To see this, consider the situations where either

player has Out as the dominant strategy (i.e. ui ă ´50). At the maximum, we

observe only 2.3% of observations within a given game in which subjects choose the

dominated strategy In. We observe similar results when looking at the regions where

In is the dominant strategy (i.e. ui ą 25). The maximum proportion of subjects

choosing the dominated strategy Out is 4.5% for the Row group and 6.8% for the

Column group.
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When looking at regions where iterated dominance plays a role, already we ob-

serve instances where subjects fail to best respond to an opponent’s dominant strat-

egy. For regions of Iterated Out Dominance (´50 ă ui ă 25 and uj ą 25), we

observe at maximum 31.8% of the Row group and 9.1% of the Column group choose

In. Similarly, for regions of Iterated In Dominance p´50 ă ui ă 25 and uj ă ´50),

we observe, at maximum 15.9% of the Row group and 22.7% of the column group

choose Out.

In regions of multiplicity (´50 ă u1, u2 ă 25), we find evidence suggesting that

payoff asymmetry can help subjects coordinate on a pure strategy Nash equilibrium.

Consider the games in the upper-left and lower-right of this region. Here, payoffs are

asymmetric in the sense that one player has a greater incentive for choosing In than

the other. The empirical frequencies show that the player with the higher incentive

chooses In more frequently than the other player. We do not observe this pattern in

games where payoffs are symmetric.

Finally, we observe that the frequency that Row and Column groups choose In

are weakly monotonic in “shocks” in most instances. Specifically, we observe that

subjects choose In more frequently as the shock to their payoff increases holding

all else fixed. Conversely, subjects choose In less frequently as the shock to their

opponent’s payoffs increases holding all else fixed. We further substantiate these

findings across all games in Section 4.3 by looking at regression results.

4.2 Violations of Nash equilibrium

We first consider violations in regions with a unique equilibrium. Recall that

there are four types of violations we can observe with a unique equilibrium: 1) viola-

tions of Out Dominance; 2) violations of In Dominance; 3) violations of Iterated Out

Dominance; and 4) violations of Iterated In Dominance. Table 5 below shows sum-

mary statistics of the aforementioned violations observed with the level of observation

being a game Γ.

We start by looking at the violations of Out Dominance. Recall that Out is the

dominant strategy for the ith group when ui ă ´x. We observe few violations of Out

Dominance for both Row and Column groups. The number of violations range from

0% to 6.8%, with an average of 2.4% for the Row group. For the Column group, the
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Row Column
Min Max Mean Min Max Mean

Out Dominance 0% 6.8% 2.4% 0% 2.3% 0.4%
In Dominance 0% 4.5% 1.9% 0% 9.1% 2.6%
Iterated Out Dominance 6.8% 31.8% 17.9% 4.5% 11.4% 7.4%
Iterated In Dominance 4.5% 29.5% 15.1% 2.3% 22.7% 13.9%

Table 5: Violation Summary Statistics

violations range from 0% to 2.3%, with an average of 0.4%.

We find similar results when looking at violations of In Dominance. Recall that

In is the dominant strategy for the ith group when ui ą ∆ ´ x. We again observe

few violations of In dominance for both Row and Column group. For the Row group,

violations range from 0% to 4.5% and average 1.9% of play in relevant situations. For

the Column group, the range is from 0% to 9.1%, with an average of 2.6% of play

in relevant situations. One point to note is that a majority of these violations occur

in the region where In is the dominant strategy for both players. In this setting, the

payoff gain from choosing In is very small (at most 10 points or $1) so that players may

have some degree of altruism. While it might be interesting to explore whether we

can separate individuals into different types or perform some type of model selection

on individual choices, we maintain our focus on the aggregate to look at comparative

statics that we hope would be more consistent in market data.

Our results suggest that subjects are able to recognize when they themselves have

a dominant strategy and act accordingly. As mentioned above, another component

to entry games is recognizing that opponents have a dominant strategy and best

responding. We next look at violations of iterated dominance. There are two instances

where iterated dominance plays a role. First, when the opponent has a dominant

strategy to play In, iterated dominance yields Out as the best response. Conversely,

when the opponent has a dominant strategy to play Out, iterated dominance yields

In as the best response.

We observe that subjects frequently fail to best respond to an opponent’s domi-

nant strategy. Fixing the case when Out is the best response, we find that violations

range from 6.8% to 31.8% for the Row group, averaging 17.9% of play in relevant situ-

ations. For the Column group, violations range from 4.5% to 11.4% with an average of
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7.4% of play in relevant situations. When looking at the the case when In is the best

response, we find violations ranging from 4.5% to 29.5% for the Row group, and 2.3%

to 22.7% for the Column group. Thus, it appears subjects may ignore information

about their opponent’s payoffs even when it is known and readily available.

We next examine behavior in regions with multiple equilibria. Given fixed px,∆q,

multiplicity of equilibria occurs for ´x ă u1, u2 ă ∆ ´ x which corresponds to the

middle box in the figures. We focus on the degree to which subjects fail to coordinate

on one of the pure strategy Nash equilibrium. We find that coordination failure ranges

from 22.7% to 75%, averaging 47.2% across games with multiple equilibria.

Given the wide range of coordination failure, one question to ask is whether pay-

offs play a role in facilitating coordination on a particular equilibrium. Experimental

results on coordination games have shown that payoffs can influence what individuals

coordinate on.10 We now look at whether there is a relationship between coordination

rates and the random shocks pu1, u2q. Table 6 highlights the coordination rates for

the (1,0) and (0,1) equilibria respectively across all games with multiple equilibria.

We observe that payoffs play a significant role in facilitating coordination on one

of the two pure strategy equilibria. Coordination rates are lowest when payoffs are

symmetric (i.e. u1 “ u2), ranging from 25% to 56.8% of play with an average of

38.3%. In contrast, coordination rates are higher when payoffs are asymmetric (i.e.

u1 ‰ u2), ranging from 52.3% to 77.3% of play, with an average of 67.3%. These

distributions are statistically different using a binomial test of equal proportions for

game-level data (p-valueă0.0001).

Furthermore, the coordination of individuals often breaks in favor of the advan-

taged player. For instance, when looking at Γ “ p50, 75,´30, 10q, the Column group

has a higher payoff from choosing In compared to the Row group (60 against 20). We

observe higher frequencies of (0,1) compared to (1,0) for this game (72.7% vs 2.3%).

When looking at the converse of this game (50, 75, 10, -30) where the Row group has

a higher payoff, we observe the opposite. Frequencies of (1,0) significantly outweigh

frequencies of (0,1) (75% vs 2.3%). We observe this pattern for all instances where

one of the players is more advantaged than the other.

10See Devetag and Ortmann (2007) for a survey on coordination failure in the lab.
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Γ Frequency of (1,0) Frequency of (0,1) Total Coordination

Symmetric Payoffs

(50, 75, -30, -30) 18.2% 9.1% 27.3%
(50, 75, 10, 10) 31.8% 9.1% 40.9%
(50, 125, -5, -5) 15.9% 15.9% 31.8%
(50, 125, 30, 30) 27.3% 15.9% 43.2%
(100, 75, -75, -75) 13.6% 11.4% 25.0%
(100, 75, -50, -50) 38.6% 18.2% 56.8%
(100, 125, -50, -50) 18.2% 15.9% 34.1%
(100, 125, -25, -25) 38.6% 9.1% 47.7%

Average Symmetric Coordination : 38.4%

Asymmetric Payoffs

(50, 75, -30, 10) 2.3% 72.7% 75.0%
(50, 75, 10, -30) 75.0% 2.3% 77.3%
(50, 125, -5, 30) 6.8% 56.8% 63.6%
(50, 125, 30, -5) 61.4% 4.5% 65.9%
(100, 75, -75, -50) 0.0% 68.2% 68.2%
(100, 75, -50, -75) 65.9% 2.3% 68.2%
(100, 125, -50, -25) 2.3% 65.9% 68.2%
(100, 125, -25, -50) 47.7% 4.5% 52.3%

Average Asymmetric Coordination: 67.3%

Table 6: Coordination Rates
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4.3 Comparative Statics and Monotonicity

Results from Section 4.2 suggest that Nash equilibrium predictions may not be

an accurate model of behavior in one-shot entry games with complete information.

However, a closer investigation of the data shows that subject choices are monotonic

with respect to payoffs. Empirical frequencies exhibit two patterns. First, keeping the

opponent’s shocks fixed, an increase in a subject’s shock ui leads to (weakly) higher

frequencies of choosing In. Secondly, keeping the subject’s shocks fixed, an increase

in the opponent’s shock uj leads to (weakly) lower frequencies of choosing In. These

findings are particularly salient in regions with multiple equilibria via equilibrium

coordination as mentioned in Section 4.2.

To quantify the effect of changes in payoffs on individual actions, we conduct a

linear regression analysis.11 For each pair px,∆q, we estimate the following regressions

for both the Row group and Column group

1tyRow
n,t px,∆q “ Inu “ β0 ` β1u1,t ` β2u2,t ` ηRow

n,t

1tyCol
n,t px,∆q “ Inu “ γ0 ` γ1u1,t ` γ2u2,t ` ηCol

n,t

where 1 is an indicator function that is 1 if subject n chose In in game t and 0

otherwise, u1,t is the shock to the Row group in game t and u2,t is the shock to the

column group in game t, and ηRow
n,t and ηCol

n,t are the residuals for the Row and Column

group respectively. We cluster standard errors at the individual level. The results are

presented in Table 7 and coefficients are significant for standard levels.

The regression results confirm our qualitative findings in Section 4.1. We observe

a monotonic increasing response of playing In as their own shock increases. For

example, the Row group is more likely to choose In as they receive a higher shock.

In particular, in the regression with px,∆q “ p50, 75q we see that an increase of

two points in own shock increases the Row group choosing In approximately 1.7%

holding everything fixed. We also see a monotonic decreasing response of playing In

as the opponent’s shock increases. For example, the Column group is less likely to

choose In as the Row groups shock increases. In particular, in the regression with

px,∆q “ p50, 75q we see that an increase of three points in the Row group’s shock

11We conduct regressions with non-linear effects and a logistic regression analysis as a robustness
check in Appendix E.
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x “ 50 & ∆ “ 75
Row (In) Column (In)

u1 0.00867 -0.00369
(0.000191) (0.000266)

u2 -0.00299 0.00858
(0.000339) (0.000131)

Constant 0.578 0.527
(0.0156) (0.0144)

Observations 704 704

x “ 50 & ∆ “ 125
Row (In) Column (In)

u1 0.00664 -0.00298
(0.000112) (0.000215)

u2 -0.00271 0.00670
(0.000237) (0.0000747)

Constant 0.424 0.405
(0.0151) (0.0154)

Observations 704 704

x “ 100 & ∆ “ 75
Row (In) Column (In)

u1 0.0106 -0.00424
(0.000315) (0.000388)

u2 -0.00316 0.0106
(0.000412) (0.000173)

Constant 0.942 0.845
(0.0305) (0.0340)

Observations 704 704

x “ 100 & ∆ “ 125
Row (In) Column (In)

u1 0.00613 -0.00279
(0.000152) (0.000198)

u2 -0.00210 0.00610
(0.000287) (0.000123)

Constant 0.648 0.584
(0.0186) (0.0224)

Observations 704 704

Table 7: OLS Regressions: Linear Effects
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decreases the Column group choosing In approximately 1.8% holding everything fixed.

Recall that one point corresponds to a $0.10 gain in payoff, thus small payoff changes

appear to have relatively large changes in behavior.

We also mention some comparative results. First, the probability of choosing In

as measured by the constant term increases as the base payoff x increases. Moreover,

the probability of choosing In as measured by the constant term decreases as the

penalty ∆ increases. Another comparison of note is that the effect of an own shock is

larger in magnitude than an opponent’s shock in all situations. We also note that the

base payoff may effect the strength of the monotone effect. For example, the shock

to the Row group’s payoff has a larger effect when going from px,∆q “ p50, 75q to

px,∆q “ p100, 75q. A similar comparative static is not seen for the higher penalty.

We also find the going to a higher penalty can affect the response. For example, an

increase in Row group’s shock has a smaller effect going from px,∆q “ p50, 75q to

px,∆q “ p50, 125q and going from px,∆q “ p100, 75q to px,∆q “ p100, 125q. There

seems to be little difference in the response to the opponent’s shock across situations.

The extent to which these results hold more generally is an open question.

5 Literature review

This paper contributes to several different groups of literature that we briefly

review here. We believe this is the first paper to experimentally look at the entry

game of Bresnahan and Reiss (1990), Berry (1992), and Tamer (2003). As mentioned

in the introduction there is a large literature in empirical industrial organizations

that uses this structure in field settings. For example, the surveys of Berry and Reiss

(2007), De Paula (2013), and Aradillas-López (2020) give a great overview of the

empirical and econometrics literature studying entry games and how the literature

has evolved. We believe this study might be of interest to this audience and may

inform additional restrictions on best responses.

Our research is also related to the study of coordination games. In particular,

the entry game is an anti-coordination game when there is a region of play where op-

ponents need to choose different actions to be in equilibrium. The survey by Cooper

and Weber (2020) gives a recent survey of the literature on coordination games, but

this entry game does not appear to be studied empirically. One closely related paper
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is Cooper et al. (1990) which experimentally studies one-shot equilibrium selection

looking at normal form coordination games with two players and three actions. Ka-

plan and Ruffle (2012) study coordination in a simultaneous two person entry game

with imperfect information and repeated interactions. They find that repetition al-

lows for subjects to coordinate on an efficient outcome by alternating the decision

to enter. Kaplan et al. (2018) expand on the above by looking at a sequential entry

game with the same payoffs. In both papers, the payoff structure is set so that the

unique Nash Equilibrium in the one-shot game is for both players choosing enter.

We note there has been an extensive experimental literature studying entry games

with linear costs of entry following the formulation by Erev and Rapoport (1998) and

Rapoport et al. (1998). This experimental work has focused on whether individuals

learn to coordinate their actions by having individuals receive feedback from each

round. Work following this approach includes Sundali et al. (1995), Camerer and

Lovallo (1999), and Zwick and Rapoport (2002) and they all focus on learning.12 We

differ from this literature by looking at a different structure, focusing on one-shot

games, and focusing on comparative statics. We are also able to clearly look at the

difference between violations of dominance and violations of iterated dominance.

In addition, there is a literature studying one-shot normal form games. For

example, the work of Stahl and Wilson (1994), Stahl and Wilson (1995), Stahl (2000),

Stahl (2000), and Stahl and Haruvy (2008) all look at various normal form games

with two players and three or more actions for each player. This research has mainly

focused on examining an individual’s ability to predict opponent play according to

“level-k” thinking. Other notable examples of papers studying “level-k” thinking

include Nagel (1995), Ho et al. (1998), Costa-Gomes et al. (2001), among many others.

Relative to this literature, we look at a very specific structure given by the entry games

following Bresnahan and Reiss (1990) and focus more on deriving comparative statics

in a simple environment. Thus, we complement this existing literature by studying

a simple setting that is empirically relevant. One other interesting paper that looks

at a wide class of one-shot games and finds some comparative statics with payoffs is

Goeree and Holt (2001).

One final area of related research is the work on quantal response equilibrium

12For a more general overview of the experimental work on industrial organizations we recommend
Holt (1995).
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following McKelvey and Palfrey (1995) and McKelvey and Palfrey (1998). Work fol-

lowing this literature starts from assuming that individuals have some unobserved

error that affects their payoffs which creates deviations from Nash equilibrium play.

Many papers have followed this research. For exammple, Rogers et al. (2009) allows

for heterogeneity in the shocks, Goeree et al. (2005) and Goeree et al. (2016) relax

the restrictions on the error terms and describe regular quantal response equilibrium,

and Allen and Rehbeck (2021a) study general aggregate models that nest the quantal

response predictions. One interesting feature about regular quantal response equilib-

rium is that these models have similar monotonicity predictions that we observe in

the data. Therefore, it might be interesting to apply these restrictions on field data

following recent statistical results in Melo et al. (2019). Relative to these papers we

focus on a simpler class of entry games to examine equilibrium predictions and search

for comparative statics. We think estimating quantal response equilibrium models

on data from our experiment is interesting. However, we believe this should be done

in a more systematic model selection exercise similar to the work by Fudenberg and

Liang (2019).

6 Conclusion

We conduct an experiment to investigate behavior in the simple one-shot, com-

plete information two player entry games described in Bresnahan and Reiss (1990);

Berry (1992) and Tamer (2003). Our experiment varies the “shocks” to payoffs from

choosing to enter the market. This allows us to observe behavior in regions with

unique and multiple equilibria. We find very few instances where subjects fail to

follow a dominant strategy. However, despite the simple environment, we observe

frequent failures of iterated dominance. In regions with multiple equilibria, we find

that payoff asymmetry acts as a coordination device wherein subjects coordinate on

the equilibrium where the player with the higher incentive to enter chooses In and

the other player chooses Out. In contrast, we observe frequent coordination failures

in games where payoffs are symmetric. We also observe that group level choices are

monotonic with respect to the shocks. Specifically, subjects are more likely to enter

when the shock to their payoffs increases, and subjects are less likely to enter when

the shock to their opponent’s payoff increases.

25



We note that some of these results could be immediately translated to restric-

tions for parameter identification and estimation in empirical industrial organization.

For example, the monotonicity with respect to payoff shocks can be translated to

parameter restrictions following a similar setup to Bresnahan and Reiss (1990), Berry

(1992), and Tamer (2003). For example, suppose there are covariates, Zi P RK , asso-

ciated to the ith player scaled by the vector βi P RK . Moreover, assume there is an

unobserved random independent error for the ith individual given by εi P R. Suppose
that the ith player enters the market according to the random variable

YipZi, Zj, εi, εjq “ 1 tβiZi ´ ∆iYjpZj, Zi, εj, εiq ` εi ą 0u

where j ‰ i and the product βiZi is a vector inner-product. Relative to the laboratory

study where x ` ui vary and are observed, we would now place the monotonicity

restrictions on βiZi where we have additional unobserved error (εi) when going to a

field setting.

Integrating over the epsilon terms gives the conditional probability of the ith

player entering conditional on covariates and is denoted by

PipZi, Zjq “

ż

εi

ż

εj

1 tβiZi ´ ∆iYjpZj, Zi, εj, εiq ` εi ą 0u fipεiqfjpεjqdεidεj.

We note that this is not a best response function since it does not involve the oppo-

nents strategy. Instead, it is an aggregate response function which just depends on

the probability of choosing an action conditional on observable information. Thus,

the restrictions require less information on the play of other individuals.13

For realizations of the covariates given by zi, z̃i, zj, z̃j P RK with zi ‰ z̃i and

zj ‰ z̃j. Monotonic increasing restrictions in own payoffs when Pipzi, zjq ‰ Pipz̃i, zjq

conditional on the opponent having zj would give

βipzi ´ z̃iqpPipzi, zjq ´ Pipz̃i, zjqq ě 0.

Similarly, monotone decreasing properties in the opponent’s payoff when Pjpzj, ziq ‰

13Similar things have been shown theoretically in bundles models by Fox and Lazzati (2017) and
Allen and Rehbeck (2021b) where identification only requires aggregate information rather than
observing bundles purchased together.
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Pjpz̃j, ziq and Pipzi, zjq ‰ Pipz̃i, zjq would give the restrictions

βjpzj ´ z̃jqpPipzi, zjq ´ Pipz̃i, zjqq ď 0.

These are a form of conditional moment inequalities similar to Pakes et al. (2015).

We note these inequalities are similar to restrictions used in Shi et al. (2018), Allen

and Rehbeck (2019), and Melo et al. (2019). These restrictions do not involve the

penalty terms of ∆i, thus they have some limitations to the field work. Further work

in this direction might look at when restrictions on ∆i are appropriate and how they

are related to these models. While this is an interesting direction to take, there

are not immediate off the shelf methods to estimate the β terms in the presence of

equilibrium so we do not perform an empirical exercise here. We hope to pursue this

in future work.
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Appendix A Experiment Instructions

The instructions to the experiment are reproduced below.

Welcome, and thank you for taking part in this Economics Experiment. This ex-

periment will last for around 1 hour. If you read the instructions carefully, you can

earn a considerable amount of money depending on your decisions, the decisions of

others and chance. Your earnings will be paid out to you via cash at the end of the

experiment.

Before we begin, we ask that you turn off your cell phones for the duration of this

experiment. We also ask that you do not communicate with anyone for the duration

of this experiment and only use the software provided to you on your devices. Failure

to comply with these rules will result in dismissal from this experiment and as a result,

you will not be paid any earnings you may have otherwise received.

Overview

In this experiment, you will take part in a series of decision tasks. The series will

consist of 64 rounds. Your payment will depend on the outcome of one randomly

chosen round.

At the beginning of every round, you will be randomly matched with another partic-

ipant to form a group of 2 members. Neither you, nor your group member will know

the other’s identity.

Decision Task

The decision task will proceed as follows. In each round, both you and your group

member must choose between option In and option Out. Both you and your group

member must make this decision without knowing the decision of the other. The

outcome will depend on your and your group member’s decisions.

For each round, your screen will show you a payoff table as shown below. The rows

indicate the possible payoffs from your decision and the columns indicate the possible

payoffs resulting from your group member’s decision.

The first number in each cell (in blue) represents your payoff. The second number in
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Other’s Choice
Out In

Your Choice
Out p0, 0q p0, a2q

In pa1, 0q pb1, b2q

each cell (in red) represents the other person’s payoff. Numbers a1, b1, a2 and b2 can

be either negative or positive. These numbers will take on different values throughout

the experiment. Your payoff will depend on the decision taken by both you and your

group member. For example, if you choose In and the other person chooses Out, you

will get a1 points and the other person will get 0.

Note: You will not be shown the outcome in any round.

To make your decision, click the radio button for your choice (either In or Out) and

click the Next button. You will not have the option to revise your decision once you

click Next.

Example

To facilitate your understanding, consider the following example of a decision round.

Note this table is merely for illustration and is not indicative of payoffs

used in the actual experiment.

Other’s Choice
Out In

Your Choice
Out p0, 0q p0, 50q

In p25, 0q p5, 35q

• If you choose In and the other person chooses In, you get 5 points and the other

person gets 35 points.

• If you choose In and the other person chooses Out, you will get 25 points and

the other person gets 0 points.

• If you choose Out and the other person chooses In, you get 0 points and the

other person gets 50 points.

• If you choose Out and the other person chooses Out, you get 0 points and the

other person gets 0 points.
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Payment

Your payment will depend on the outcome of one round chosen at random from the

64 rounds. At the end of the experiment, you will be notified about the round chosen

for payment, your decision in that round, the decision of your group member, and

the payoff from these decisions.

Your payoff (in points) for the randomly chosen round will be added to a balance of

150 points. You will be paid for the remaining balance.

Your payment will be calculated using the following conversion rate:

1 point = $0.10

In addition to this, you will also receive a show up fee of $5. Your payment will be

paid to you via cash at the end of the experiment.

Summary

The following points summarize the experiment.

1. You will take part in a series of 64 decision tasks

2. You will be randomly matched with another participant at the start of every

round.

3. You and your group member will have to decide between choosing In or Out.

4. The payoffs will depend on your and your group member’s decisions and will

vary from round to round.

5. You will not know the outcome of any round.

6. At the end of the experiment, you will be notified about the outcome of one

randomly chosen round and will be paid for the outcome of that round and

a starting balance of 150 points at the rate of 1 point = $0.10.

Before we begin, we will ask you to take part in a short sequence of “Trial” rounds

to test your understanding of the experiment.
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Appendix B Trial Round Example

Figure 5 shows an example of a trial round that checks a subject’s understand-

ing of the experiment. First, the subject makes a decision similar to those in the

experiment. Second, they answer a question about the payoffs in a relevant situation.

(a) Choice

(b) Questions

Figure 5: Example Trial Round
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Appendix C Additional Entry Rates

Figure 6, Figure 7, and Figure 8 show the empirical frequencies of subjects

choosing In for the remaining 48 games.

Figure 6: Entry rates when x “ 50, ∆ “ 125

Figure 7: Entry rates when x “ 100, ∆ “ 75

36



Figure 8: Entry rates when x “ 100, ∆ “ 125

Appendix D Mixed Strategy Equilibria

In this section, we compare the empirical frequencies in regions of multiple equi-

libria to the predictions outlined by the Mixed Strategy Nash Equilibrium (MSNE).

Recall that the MSNE for the ith group is given by the probability of choosing In

pi “ 1´
xj`uj´∆j

´∆j
. Table 8 below compares the predicted MSNE probabilities for each

of the 16 games with multiple equilibria to the realized empirical frequencies.

The mixed strategy equilibrium yields the following comparative static predic-

tions: keeping the ith group’s payoff fixed, the frequency of the ith group choosing

In increases as jth group’s payoffs from choosing In increase. Furthermore, keeping

the jth group’s payoffs fixed, the frequency of the ith group choosing In is invariant

to the ith group’s payoffs from choosing In. These predictions stem from the fact

that players mix strategies in order to ensure that their opponent is indifferent when

choosing their strategies.

Our empirical results show the exact opposite in a majority of cases. The fre-

quency of choosing In decreases as the opponent’s payoff from choosing In increases.

Furthermore, the frequency of choosing In increases as a group’s payoff from choosing

In increases.
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Γ pRow pCol Row In (%) Column In (%)
(50, 75, -30, -30) 26.7% 26.7% 22.7% 13.6%
(50, 75, -30, 10) 80.0% 26.7% 9.1% 79.5%
(50, 75, 10, -30) 26.7% 80.0% 75.0% 2.3%
(50, 75, 10, 10) 80.0% 80.0% 68.2% 45.5%
(50, 125, -5, -5) 36.0% 36.0% 22.7% 22.7%
(50, 125, -5, 30) 64.0% 36.0% 15.9% 65.9%
(50, 125, 30, -5) 36.0% 64.0% 63.6% 6.8%
(50, 125, 30, 30) 64.0% 64.0% 43.2% 31.8%
(100, 75, -75, -75) 33.3% 33.3% 22.7% 20.5%
(100, 75, -75, -50) 66.7% 33.3% 6.8% 75.0%
(100, 75, -50, -75) 33.3% 66.7% 68.2% 4.5%
(100, 75, -50, -50) 66.7% 66.7% 63.6% 43.2%
(100, 125, -50, -50) 40.0% 40.0% 20.5% 18.2%
(100, 125, -50, -25) 60.0% 40.0% 6.8% 70.5%
(100, 125, -25, -50) 40.0% 60.0% 54.5% 11.4%
(100, 125, -25, -25) 60.0% 60.0% 65.9% 36.4%

Table 8: Comparison to MSNE

Appendix E Additional Regression Results

In this section we conduct a more robust comparative static analysis of subject

choices. We first estimate the same linear effects regression as in Section 4.3 with

individual subject fixed effects. We then estimate non-linear effects of shocks on

player choices using OLS. To estimate non-linear effects of the shocks, for each px,∆q

we order the four shocks for each group i P t1, 2u so u0
i ă u1

i ă u2
i ă u3

i and assign

indicator variables when the shocks take the values u1
i , u

2
i , or u

3
i to pick up the effect

of each shock relative to the lowest levels u0
1 and u0

2. We then estimate both linear

and non-linear effects using logistic regressions.

E.1 OLS with Linear Effects including Subject Fixed Effects

Table 9 below shows the results for the linear effects regression using subject

fixed effects. Qualitatively the results are the same.
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x “ 50 & ∆ “ 75
Row (In) Column (In)

u1 0.00855 -0.00380
(0.000233) (0.000300)

u2 -0.00311 0.00847
(0.000384) (0.000164)

Observations 704 704

x “ 50 & ∆ “ 125
Row (In) Column (In)

u1 0.00668 -0.00293
(0.000114) (0.000225)

u2 -0.00267 0.00675
(0.000238) (0.0000969)

Observations 704 704

x “ 100 & ∆ “ 75
Row (In) Column (In)

u1 0.00946 -0.00541
(0.00106) (0.00108)

u2 -0.00426 0.00942
(0.00109) (0.00102)

Observations 704 704

x “ 100 & ∆ “ 125
Row (In) Column (In)

u1 0.00594 -0.00301
(0.000237) (0.000302)

u2 -0.00228 0.00588
(0.000357) (0.000238)

Observations 704 704

Table 9: OLS Regression: Linear Effects with Subject fixed effects

E.2 OLS with Non-Linear Effects

We estimate, for each px,∆q combination, a linear regression of the following

form for Row and Column groups separately:

1pyRow
n,t px,∆q “ 1q “ β0 ` β11tu1,t “ u1

1u ` β21tu1,t “ u2
1u ` β31tu1,t “ u3

1u

` β41tu2,t “ u1
2u ` β51tu2,t “ u2

2u ` β61tu2,t “ u3
2u ` ηRow

n,t

1pyCol
n,t px,∆q “ 1q “ γ0 ` γ11tu1,t “ u1

1u ` γ21tu1,t “ u2
1u ` γ31tu1,t “ u3

1u

` γ41tu2,t “ u1
2u ` γ51tu2,t “ u2

2u ` γ61tu2,t “ u3
2u ` ηCol

n,t

where yjn,t is the nth subject’s choice from group j P tRow,Columnu and game t, 1 is

an indicator function that is 1 when the statement in parenthesis is satisfied. In these

regressions, the coefficients β1 ´ ´β6 give the change in the probability of choosing

In for the Row player relative to the lowest values (u0
1 and u0

2). The same is true for

the coefficients γ1 ´ ´γ6 for the Column player. We cluster standard errors at the

individual subject level. The results are shown in Table 10.

We observe monotonicity with respect to the shocks on the probability of subjects

39



choosing In. All coefficients are statistically significant at the 5% level. Furthermore,

the magnitude of the effects are increasing in the size of the shocks.14 For the Row

group, all u1 shocks have a positive coefficient, suggesting that an increase in Row

group’s payoffs leads to an increase in the probability of choosing In with the effect

increasing in the size of the shock. Conversely, all u2 shocks have a negative coefficient

which suggests that an increase in the Column group’s payoffs lead to a decrease of the

probability of the Row group choosing In. Here, the effect becomes more pronounced

as the value of the shock increases. We find qualitatively similar effects for Column

group. Specifically, the probability of Column group choosing In is increasing in the

shocks to the Column group’s payoff (u2) and decreasing in the shocks to the Row

group’s payoffs (u1) with the effect becoming more pronounced as the size of the

shock increases.

14We can statistically reject that the coefficients are equal at the 5% significance level for all but
one of the comparisons.
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x “ 50 & ∆ “ 75
Row (In) Column (In)

u1 (base = ´75)
-30 0.290 -0.205

(0.0336) (0.0249)
10 0.642 -0.318

(0.0378) (0.0250)
35 0.972 -0.415

(0.0186) (0.0316)
u2 (base = ´75)
-30 -0.187 0.239

(0.0233) (0.0258)
10 -0.239 0.574

(0.0282) (0.0322)
35 -0.352 0.977

(0.0411) (0.0110)

Constant 0.212 0.240
(0.0262) (0.0174)

Observations 704 704

x “ 50 & ∆ “ 125
Row (In) Column (In)

u1 (base = ´60)
-5 0.330 -0.227

(0.0314) (0.0281)
30 0.551 -0.358

(0.0332) (0.0250)
85 0.966 -0.426

(0.0155) (0.0301)
u2 (base = ´60)
-5 -0.250 0.307

(0.0245) (0.0335)
30 -0.324 0.494

(0.0290) (0.0341)
85 -0.398 0.983

(0.0340) (0.00965)

Constant 0.254 0.259
(0.0184) (0.0177)

Observations 704 704

x “ 100 & ∆ “ 75
Row (In) Column (In)

u1 (base = ´110)
-75 0.239 -0.165

(0.0316) (0.0326)
-50 0.568 -0.290

(0.0457) (0.0326)
-20 0.938 -0.375

(0.0247) (0.0360)
u2 (base = ´110)
-75 -0.136 0.278

(0.0404) (0.0308)
-50 -0.193 0.517

(0.0390) (0.0411)
-20 -0.290 0.966

(0.0382) (0.0155)

Constant 0.189 0.207
(0.0239) (0.0227)

Observations 704 704

x “ 100 & ∆ “ 125
Row (In) Column (In)

u1 (base = ´125)
-50 0.295 -0.233

(0.0262) (0.0320)
-25 0.523 -0.318

(0.0354) (0.0309)
30 0.955 -0.426

(0.0235) (0.0312)
u2 (base = ´125)
-50 -0.239 0.295

(0.0336) (0.0319)
-25 -0.227 0.500

(0.0363) (0.0400)
30 -0.330 0.955

(0.0445) (0.0187)

Constant 0.233 0.250
(0.0292) (0.0228)

Observations 704 704

Table 10: OLS Regressions: Non-Linear effects
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E.3 Logit Regression with Linear Effects

In this subsection we estimate logit regressions with linear effects using the same

covariate structure as the regression in Section 4.3. The results for estimating a linear

effect using logit regression are given below in Table 11. We also estimate the same

x “ 50 & ∆ “ 75
Row (In) Column (In)

u1 0.0739 -0.0535
(0.00829) (0.00946)

u2 -0.0337 0.100
(0.00631) (0.0134)

Constant 0.292 -0.319
(0.158) (0.201)

Observations 704 704

x “ 50 & ∆ “ 125
Row (In) Column (In)

u1 0.0604 -0.0375
(0.00654) (0.00640)

u2 -0.0287 0.0718
(0.00492) (0.00791)

Constant -0.695 -1.075
(0.196) (0.255)

Observations 704 704

x “ 100 & ∆ “ 75
Row (In) Column (In)

u1 0.0806 -0.0475
(0.0100) (0.00690)

u2 -0.0290 0.100
(0.00581) (0.00806)

Constant 2.948 2.594
(0.343) (0.290)

Observations 704 704

x “ 100 & ∆ “ 125
Row (In) Column (In)

u1 0.0538 -0.0310
(0.00785) (0.00412)

u2 -0.0189 0.0680
(0.00391) (0.00701)

Constant 1.075 0.656
(0.168) (0.244)

Observations 704 704

Table 11: Logit Regression: Linear Effects

specification using subject fixed effects. The results are in Table 12.

E.4 Non-Linear Effects

In this subsection we estimate logit regressions with non-linear effects using the

same covariate structure as the regression in Appendix 10. The results for the non-

linear effects logit specification are shown in Table 13 below.15

15For x “ 100 and δ “ 75, some of the observations for the column group were perfectly deter-
mined leading to Stata to drop these observations when estimating the regression.
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x “ 50 & ∆ “ 75
Row (In) Column (In)

u1 0.0951 -0.0702
(0.0100) (0.0137)

u2 -0.0431 0.132
(0.00805) (0.0204)

Observations 704 704

x “ 50 & ∆ “ 125
Row (In) Column (In)

u1 0.0759 -0.0561
(0.0101) (0.0126)

u2 -0.0365 0.107
(0.00687) (0.0185)

Observations 704 704

x “ 100 & ∆ “ 75
Row (In) Column (In)

u1 0.0919 -0.0627
(0.0144) (0.00856)

u2 -0.0380 0.116
(0.00755) (0.0161)

Observations 704 704

x “ 100 & ∆ “ 125
Row (In) Column (In)

u1 0.0639 -0.0460
(0.0103) (0.00666)

u2 -0.0228 0.0973
(0.00517) (0.0140)

Observations 704 704

Table 12: Logit Regression: Linear Effects with Subject fixed effects
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x “ 50 & ∆ “ 75
Row (In) Column (In)

u1 (base = ´75)
-30 3.873 -2.686

(1.148) (0.495)
10 5.947 -4.095

(1.230) (0.619)
35 10.17 -5.713

(1.420) (1.012)
u2 (base = ´75)

-30 -2.078 4.948
(0.429) (1.118)

10 -2.595 7.706
(0.482) (1.286)

35 -3.883 12.43
(0.729) (1.537)

Constant -2.837 -3.849
(1.014) (1.010)

Observations 704 704

x “ 50 & ∆ “ 125
Row (In) Column (In)

u1 (base = ´60)
-5 4.975 -2.586

(0.816) (0.459)
30 6.389 -3.934

(0.956) (0.547)
85 10.35 -5.131

(1.264) (0.868)
u2 (base = ´60)

-5 -2.818 5.527
(0.436) (1.162)

30 -3.504 6.959
(0.545) (1.214)

85 -4.333 12.38
(0.737) (1.388)

Constant -3.151 -3.861
(0.712) (1.008)

Observations 704 704

x “ 100 & ∆ “ 75
Row (In) Column (In)

u1 (base = ´110)
-75 2.581 -1.674

(0.630) (0.411)
-50 4.264 -2.897

(0.793) (0.452)
-20 7.666 -4.054

(1.005) (0.612)
u2 (base = ´110)

-75 -1.183 0
(0.434) (.)

-50 -1.684 1.539
(0.445) (0.286)

-20 -2.643 5.555
(0.523) (0.619)

Constant -2.375 0.769
(0.499) (0.343)

Observations 704 528

x “ 100 & ∆ “ 125
Row (In) Column (In)

u1 (base = ´125)
-50 3.092 -2.429

(0.603) (0.449)
-25 4.291 -3.247

(0.696) (0.491)
30 8.838 -4.684

(1.359) (0.649)
u2 (base = ´125)

-50 -2.074 5.228
(0.395) (1.038)

-25 -1.975 6.642
(0.425) (1.100)

30 -2.984 10.62
(0.622) (1.188)

Constant -2.183 -3.894
(0.516) (1.029)

Observations 704 704

Table 13: Logistic Regressions: Non-Linear effects
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